
Real-time Anomaly Detection 
in the CMS Experiment

Noah Zipper on behalf of the CMS Collaboration

Tuesday, October 15, 2024 Fast Machine Learning for Science Conference 2024 1



The Large Hadron Collider (LHC) @ CERN
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https://home.cern/science/experiments/cms



The CMS Trigger
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How can we deal with new collision data ~40 million times a 
second?

- We read in >60 TB/s from the detector!
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The CMS Trigger
How can we deal with new collision data ~40 million times a 
second?

- We read in >60 TB/s from the detector!

The trigger cuts > 99.9% of incoming data, only picks interesting 
interactions

We use a set of algorithms – the “trigger menu” – that looks at each 
event and decides to keep or toss data

The trigger is broken up into two phases

- Level-1 (L1T) – First step of real-time triggering, happens on 
hardware

- Decisions in < 5 microseconds

- High-Level (HLT) – Data is passed from hardware to off-detector 
software

- Decisions in < ½ second
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Why Anomaly Detection?

Currently, we use simple heuristics to define trigger algorithms
- Energy, charge, direction, momentum, etc.

In this approach, we need to know what we’re looking for to target it
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Enter AXOL1TL… 

Anomaly eXtraction Online Level-1 Trigger aLgorithm



L1 Anomaly Detection @ LHC
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“Zero Bias”

A dataset with no triggers, only 
turned on for small slices of time. 
Records events synched up with 
when collisions occur, saves 
everything. AXO is an unsupervised Variational Autoencoder (VAE)

- Simple neural network(s), trained on real Zero Bias* data

- Basic L1 trigger objects as vector inputs 
- (pT, η, ɸ) for 1 p!"#$$, 4 e/γ, 4 μ, and 10 jets

VAE uses encoder & decoder to compress and reconstruct the input data
- Squeeze data into a small dimension “latent space”

- Forces efficient information encoding ➔ network “learns”

- Network gets good at encoding + decoding typical data examples



Anomalous Interaction
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“Zero Bias”

A dataset with no triggers, only 
turned on for small slices of time. 
Records events synched up with 
when collisions occur, saves 
everything. 

L1 Anomaly Detection @ LHC

AXO is an unsupervised Variational Autoencoder (VAE)
- Simple neural network(s), trained on real Zero Bias* data

- Basic L1 trigger objects as vector inputs 
- (pT, η, ɸ) for 1 p!"#$$, 4 e/γ, 4 μ, and 10 jets

VAE uses encoder & decoder to compress and reconstruct the input data
- Squeeze data into a small dimension “latent space”

- Forces efficient information encoding ➔ network “learns”

- Network gets good at encoding + decoding typical data examples

- Much worse for atypical examples



Model Design

Level-1 Trigger constraints informed design
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• Standard optimization approaches for fast-ML
• Pruning, truncation, quantization-aware training
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Level-1 Trigger constraints informed design
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Model Design

• Standard optimization approaches for fast-ML
• Pruning, truncation, quantization-aware training

• Remove decoder network
• Significant latency & resource savings, minimal performance degradation

• Remove latent σ term from loss calculation
• Saves even more on timing, negligible performance degradation
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The CMS Level-1 Trigger System AXO Algorithm

Integrating into the Trigger System
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Algorithm must run on Field Programmable 
Gate Arrays (FPGAs)

- Firmware sits in MP7 Global Trigger board
- Xilinx Virtex 7 chip

- AXO runs in < 50 nanoseconds
- Whole algorithm chain takes a few microseconds
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Algorithm must run on Field Programmable 
Gate Arrays (FPGAs)

- Firmware sits in MP7 Global Trigger board
- Xilinx Virtex 7 chip

- AXO runs in < 50 nanoseconds
- Whole algorithm chain takes a few microseconds

Build into existing global trigger firmware
- Test accuracy, timing, and resource usage in simulation

CERN-CMS-DP-2023-079 (2023). https://cds.cern.ch/record/2876546 

https://cds.cern.ch/record/2876546


Performance and Validation

We validated stability in 2023
- Used “test crate” to monitor performance

- Trigger rates in data are stable and within 
expected ranges
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Pileup* dependence 
- Observed large, but anticipated correlation

“Pileup”

The number of concurrent interactions during a bunch collision. 
High pileup can spike trigger rate and lead to lost data.

CMS-CMS-DP-2024-059 (2024). https://cds.cern.ch/record/2904695. 

https://cds.cern.ch/record/2904695


Integrating into the Trigger System

Algorithm added into production 
system in May 2024, and taking 
data ever since 🎉
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Underground in CMS 
electronics room

Level-1 Global Trigger Boards, 
responsible for all saved data 
from detector



First Results from Real 2024 Data!
Still have lots of data to look through, but these are some first observations…
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Anomaly score distributions
- We see a bump in “pure” events, where only AXO and no other 

L1 triggers select an interaction

- Correlation with other triggers at high scores 

CMS-CMS-DP-2024-059 (2024). https://cds.cern.ch/record/2904695. 

https://cds.cern.ch/record/2904695


First Results from Real 2024 Data!
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“HT” or “Hadronic Energy Sum”

Quarks or gluons from collisions 
produce clusters of energy in the 
detector. We sum up all this energy in 
an event to get the HT.

In some kinematic variables like HT*, we see different shapes in 
AXO vs. other triggers

AXO decides certain known signals are too common
- Selects other, more anomalous, patterns

- We’re still figuring out what the patterns are

CMS-CMS-DP-2024-059 (2024). https://cds.cern.ch/record/2904695. 

https://cds.cern.ch/record/2904695
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“HT” or “Hadronic Energy Sum”

Quarks or gluons from collisions 
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an event to get the HT.

Invariant mass distributions
- Here, we combine objects to find a decaying particle mass

- Smooth and falling shape

- We can use this to search for new particles!

These shapes mean characterizing backgrounds to find 
signal is easier
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“HT” or “Hadronic Energy Sum”

Quarks or gluons from collisions 
produce clusters of energy in the 
detector. We sum up all this energy in 
an event to get the HT.

Invariant mass distributions
- Here, we combine objects to find a decaying particle mass

- Smooth and falling shape

- We can use this to search for new particles!

These shapes mean characterizing backgrounds to find 
signal is easier

- We can use this to search for new particles!

With more data and tuning… we may 
see signals here!

CMS-CMS-DP-2024-059 (2024). https://cds.cern.ch/record/2904695. 

https://cds.cern.ch/record/2904695


Next Steps

Dig more into the data, figure out what patterns AXO is finding
- Maybe something we haven’t recorded before

Design analysis strategies with anomaly data
- Searching for mass resonances (“bump hunt”)

Update and upgrade algorithm
- AXO changes with changing detector conditions

- Prepare for 2025!

- Improve performance with new kinds of ML models
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Thanks for 
listening!

From 2023 ZeroBias dataset, an anomalous event not triggered by standard L1 Menu.

This event features the maximal number of L1 jets (12), of which 11 have ET > 20 GeV. 
It also features a 3 GeV L1 muon. Offline reconstruction identifies 7 jets (reconstructed 
with the PUPPI algorithm) with pT > 15 GeV, and 1 muon.

The event is also characterized by a very unlikely large number of reconstructed 
vertices (75), given the pile up profile of the data taken in Run 2 and Run 3. CERN-CMS-DP-2023-079 (2023). https://cds.cern.ch/record/2876546 

https://cds.cern.ch/record/2876546


Backup
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uGT bitfiles 
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DP Note Plots
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CMS-CMS-DP-2024-059 (2024). 
https://cds.cern.ch/record/2904695. 
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