Precision Flavor Measurements and Real-Time Anomaly Detection at the CMS Detector

Noah Zipper

University of Colorado Boulder

CERN

APS Four Corners Meeting

1

Illustration by Sandbox Studio, Chicago with Ariel Davis

The Large Hadron Collider (LHC) @ CERN

Why LHC Physics?

We have SOOO much data

- It's been analyzed and over-analyzed
- Time to get creative \rightarrow new approaches to collect and analyze data

Emerging Jet

Why LHC Physics?

We have SOOO much data

- It's been analyzed and over-analyzed
- Time to get creative \rightarrow new approaches to collect and analyze data

Emeraina Jet

CMS Collaboration @ CERN

- Complex interconnected detector systems
 - Tracking, calorimetry, and muon detection
 - Target vastly different searches and measurements
- Yet, we all contribute to maintaining and improving the detector for everyone's benefit

Coming Up...

We'll talk about the trigger system

- Can we collect data in a smarter way?
- We think *****AXOLITL** can leverage machine learning to do it

Coming Up...

We'll talk about the trigger system

- Can we collect data in a smarter way?
- We think *******AXOLITL can leverage machine learning to do it

Introduction to precision measurements at CMS

- Confirming the Standard Model vs. new physics
- How do we actually *do* the analysis work?

Real-Time Anomaly Detection with an Unsupervised Autoencoder at the CMS Level-1 Trigger

How can we deal with new collision data ~40 million times a second?

- We read in >60 TB/s from the detector!

How can we deal with new collision data ~40 million times a second?

- We read in >60 TB/s from the detector!

The trigger cuts > 99.9% of incoming data, only picks interesting interactions

How can we deal with new collision data ~40 million times a second?

- We read in >60 TB/s from the detector!

The trigger cuts > 99.9% of incoming data, only picks interesting interactions

We use a set of algorithms – the "trigger menu" – that looks at each event and decides to keep or toss data

How can we deal with new collision data ~40 million times a second?

- We read in >60 TB/s from the detector!

The trigger cuts > 99.9% of incoming data, only picks interesting interactions

We use a set of algorithms – the "trigger menu" – that looks at each event and decides to keep or toss data

The trigger is broken up into two phases

- Level-1 (L1T) First step of real-time triggering, on hardware
- High-Level (HLT) Data is passed from hardware to offdetector software

Why Anomaly Detection?

Currently, we use simple heuristics to define trigger algorithms

- Energy, charge, direction, momentum, etc.

Energy [GeV]

In this approach, we need to know what we're looking for to target it

Why Anomaly Detection?

Currently, we use simple heuristics to define trigger algorithms

- Energy, charge, direction, momentum, etc.

In this approach, we need to know what we're looking for to target it

- How do we stop rejecting data because we don't know what to look for?

Saturday, October 12, 2024

13

Why Anomaly Detection?

Currently, we use simple heuristics to define trigger algorithms

- Energy, charge, direction, momentum, etc.

In this approach, we need to know what we're looking for to target it

- How do we stop rejecting data because we don't know what to look for?

AXOLITL Algorithm

We use an unsupervised Variational Autoencoder (VAE)

- Simple neural network(s), trained on real Zero Bias* data
- Basic trigger objects as vector inputs

VAE uses encoder & decoder to compress and reconstruct the input data

- Squeeze data into a small dimension "latent space"
 - Forces efficient information encoding → network "learns"
- Network gets good at encoding + decoding typical data examples

A dataset with no triggers, only turned on for small slices of time. Records events synched up with when collisions occur, saves everything.

AXOLITL Algorithm

We use an unsupervised Variational Autoencoder (VAE)

- Simple neural network(s), trained on real Zero Bias* data
- Basic trigger objects as vector inputs

VAE uses encoder & decoder to compress and reconstruct the input data

- Squeeze data into a small dimension "latent space"
 - Forces efficient information encoding → network "learns"
- Network gets good at encoding + decoding typical data examples
- Much worse for atypical examples

Real data **x**

A dataset with no triggers, only turned on for small slices of time. Records events synched up with when collisions occur, saves everything.

AXOLITL Algorithm

We use an unsupervised Variational Autoencoder (VAE)

- Simple neural network(s), trained on real Zero Bias* data
- Basic trigger objects as vector inputs

VAE uses encoder & decoder to compress and reconstruct the input data

- Squeeze data into a small dimension "latent space"
 - Forces efficient information encoding → network "learns"
- Network gets good at encoding + decoding typical data examples
- Much worse for atypical examples

Real data xReconstructed data \hat{x} If we take the difference between input (X) and the output (\hat{X}) , $|X - \hat{X}|$, it'll be small for normal data and large for anomalous dataThis is our anomaly score

:

"Zero Bias"

A dataset with no triggers, only turned on for small slices of time. Records events synched up with when collisions occur, saves everything.

Integrating into the Trigger System

Algorithm must run on Field Programmable Gate Arrays (FPGAs)

- Cut out decoder and simplify score metric
- Minimal performance degradation
- Runs in < 50 nanoseconds

<**₽**₽

Saturday, October 12, 2024

Integrating into the Trigger System

Algorithm must run on Field Programmable Gate Arrays (FPGAs) with constraints

- Cut out decoder and simplify score metric
- Minimal performance degradation
- Runs in < 50 nanoseconds

AXO added into production system in May 2024 🎉

Still have lots of data to look through, but these are some first observations...

Still have lots of data to look through, but these are some first observations...

In some kinematic variables like H_T*, we see different shapes in AXO vs. other triggers

AXO decides certain known signals are too common

- Selects other, more anomalous, patterns

"H_T" or "Hadronic Energy Sum"

Quarks or gluons from collisions produce clusters of energy in the detector. We sum up all this energy in an event to get the H_T .

Still have lots of data to look through, but these are some first observations...

"H_T" or "Hadronic Energy Sum"

Quarks or gluons from collisions produce clusters of energy in the detector. We sum up all this energy in an event to get the H_T .

Still have lots of data to look through, but these are some first observations...

CMS Preliminarv 0.527 fb⁻¹, 2024 (13.6 TeV) In some kinematic variables like H_T^* , we see Events 10⁷ 10⁶ Run 380470 different shapes in AXO vs. other triggers JetHT AXO decides certain known signals are too common **Double Muon** AXO Nominal 10⁵ - Selects other, more anomalous, patterns AXO Tight **CMS** Preliminary 0.527 fb⁻¹, 2024 (13.6 TeV) 10⁴ Events Run 380470 10³ **JetHT Double Muon** 10² 10⁵ **AXO** Nominal AXO Tight Invariant mass distributions 10¹ 10⁴ Combine objects to find a decaying particle With more data and tuning. 10⁰ 10³ we may see signals here! 500 1000 1500 mass 0 2000 L1 H_T [GeV] - Smooth and falling shapes 10^{2} Smooth shapes means easier backgrounds to 10¹ characterize 10^{0}

We can find new particles!

2500

500

0

1000

1500

m_{HLT} Scouting Jet, HLT Scouting Jet [GeV]

2000

APS Four Corners Meeting

3000

"H_T" or "Hadronic Energy Sum"

Quarks or gluons from collisions produce clusters of energy in the detector. We sum up all this energy in an event to get the H_T .

Ongoing Work

Dig more into the data, figure out what patterns AXO is finding

Design analysis strategies with anomaly data

Update and upgrade algorithm

A Precision Measurement of Lepton Flavor Universality with the R(K) Ratio at the CMS Detector

Lepton Flavor Universality (LFU)

The Standard Model (SM) of particle physics is built on symmetries

- Particles and interactions are constructed so they obey these symmetries

Lepton Flavor Universality (LFU)

The Standard Model (SM) of particle physics is built on symmetries

- Particles and interactions are constructed so they obey these symmetries
- One implicit symmetry is LFU
 - We have 3 lepton flavors (+ neutrinos)

- LFU states these flavors of leptons must behave identically, aside from their different masses

The R(K) Measurement

To test LFU, we want an identical measurement for electrons and muons

At the LHC, we can find B meson decays that are really rare

- B decays with a kaon and non-resonant lepton pair (< 1 out of 2 million)
- Suppressed at tree-level by the standard model \rightarrow extra sensitive to new physics

The R(K) Measurement

R(K)

To test LFU, we want an identical measurement for electrons and muons At the LHC, we can find B meson decays that are really rare

- B decays with a kaon and non-resonant lepton pair (< 1 out of 2 million)
- Suppressed at tree-level by the standard model → extra sensitive to new physics

Build a ratio:

= 1 means a confirmation of the SM

≠ 1 could mean new physics Beyond the Standard Model (BSM)

Our Measurement – Unique Data-Taking Strategies

B Parking

- There is a data bottleneck during offline reconstruction*
- We can save more B decays by "parking" the data on separate storage, waiting to reconstruct it

Our Measurement – Unique Data-Taking Strategies

Dynamic trigger scaling

- Need data with loose energy thresholds
- Always keeping thresholds loose saves too many events
- Use full L1T bandwidth by shifting thresholds as the luminosity* changes

"Luminosity"

The number of collisions happening over time. This changes based on how many protons are in the beams and how "head-on" the beams are colliding.

Simplified Analysis Steps

Simplified Analysis Steps

Figure out how to collect the data

- Trigger strategy and characterization

CMS work in progress

Sublead Electron p_T[GeV]

Simplified Analysis Steps

Figure out how to collect the data

- Trigger strategy and characterization
- Cut out as much noise as possible
 - Object selection, kinematic fitting, and cuts
 - Event selection Boosted Decision Tree (BDT)

Simplified Analysis Steps

Figure out how to collect the data

- Trigger strategy and characterization
- Cut out as much noise as possible
 - Object selection, kinematic fitting, and cuts
 - Event selection Boosted Decision Tree (BDT)

Plot data and fit signal + background model

- Signal yield from fit goes into R(K) ratio

Simplified Analysis Steps

Figure out how to collect the data

- Trigger strategy and characterization
- Cut out as much noise as possible
 - Object selection, kinematic fitting, and cuts
 - Event selection Boosted Decision Tree (BDT)

Plot data and fit signal + background model

- Signal yield from fit goes into R(K) ratio

Identify systematic uncertainties

Uncertainty Table from 2018 Analysis

Source	Impact on the $R(K)$ ratio [%]
Background description, low- q^2 bin	1.8
Trigger turn-on	1.3
Reweighting in $p_{\rm T}$ and rapidity	0.9
Background description, J/ψ CR	0.6
J/ ψ meson radiative tail description	0.5
Pileup	0.4
Signal shape description	0.3
Trigger efficiency	0.2
J/ψ resonance shape description	0.1
Nonresonant contribution to the J/ ψ CR	0.1
Total systematic uncertainty	2.6
Statistical uncertainty in MC samples	1.7
Statistical uncertainty in data	7.5
Total uncertainty	8.1

The CMS Collaboration 2024 Rep. Prog. Phys. 87 077802

Our Uncertainty Calculations

Simplified Analysis Steps

Figure out how to collect the data

- Trigger strategy and characterization

Cut out as much noise as possible

- Object selection, kinematic fitting, and cuts
- Event selection Boosted Decision Tree (BDT)

Plot data and fit signal + background model

- Signal yield from fit goes into R(K) ratio

Identify systematic uncertainties **Publish!**

Simplified Analysis Steps

Figure out how to collect the data

- Trigger strategy and characterization
- Cut out as much noise as possible
 - Object selection, kinematic fitting, and cuts
 - Event selection Boosted Decision Tree (BDT)

Plot data and fit signal + background model

- Signal yield from fit goes into R(K) ratio

Identify systematic uncertainties

Publish! After Review!

Thanks for Listening

Potential Takeaways

Why there's still plenty of interesting physics at the LHC

How the CMS Level-1 Trigger works

The power of leveraging machine learning for data collection

How to test the Standard Model by probing rare decays

How a CMS analysis works

Backup

The Standard Model

The Full R(K) Story

Use a double-ratio

- J/ψ resonant decay $(B^+ \rightarrow J/\psi (\rightarrow e^+e^-)K^+)$ is an ideal control channel
 - Similar kinematics, more events, better understood systematics
- Use the J/ψ to control for systematic uncertainty

$$R(K) = \frac{\frac{B^+ \to \mu^+ \mu^- K^+}{B^+ \to J/\psi(\to \mu^+ \mu^-)K^+}}{\frac{B^+ \to e^+ e^- K^+}{B^+ \to J/\psi(\to e^+ e^-)K^+}}$$

History of the R(K) Measurement

Been measured many different times from different experiments

Previous (anomalous) results have been superseded

